Every 2-dimensional Banach space has the Mazur–Ulam property

نویسندگان

چکیده

We prove that every isometry between the unit spheres of 2-dimensional Banach spaces extends to a linear spaces. This resolves famous Tingley's problem in class

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Every Banach Space is Reflexive

The title above is wrong, because the strong dual of a Banach space is too strong to assert that the natural correspondence between a space and its bidual is an isomorphism. This, from a categorical point of view, is indeed the right duality concept because it yields a self adjoint dualisation functor. However, for many applications the non–reflexiveness problem can be solved by replacing the n...

متن کامل

Weak Banach-Saks property in the space of compact operators

For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and‎ ‎a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$‎, ‎it is shown that the strong Banach-Saks-ness of all evaluation‎ ‎operators on ${mathcal M}$ is a sufficient condition for the weak‎ ‎Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in‎ ‎Y^*$‎, ‎the evaluation op...

متن کامل

Every Countable Group Has the Weak Rohlin Property

We present a simple proof of the fact that every countable group Γ is weak Rohlin, that is, there is in the Polish space AΓ of measure preserving Γ-actions an action T whose orbit in AΓ under conjugations is dense. In conjunction with earlier results this in turn yields a new characterization of non-Kazhdan groups as those groups which admit such an action T which is also ergodic.

متن کامل

weak banach-saks property in the space of compact operators

for suitable banach spaces $x$ and $y$ with schauder decompositions and‎ ‎a suitable closed subspace $mathcal{m}$ of some compact operator space from $x$ to $y$‎, ‎it is shown that the strong banach-saks-ness of all evaluation‎ ‎operators on ${mathcal m}$ is a sufficient condition for the weak‎ ‎banach-saks property of ${mathcal m}$, where for each $xin x$ and $y^*in‎ ‎y^*$‎, ‎the evaluation op...

متن کامل

Banach Spaces with the 2-summing Property

A Banach space X has the 2-summing property if the norm of every linear operator from X to a Hilbert space is equal to the 2-summing norm of the operator. Up to a point, the theory of spaces which have this property is independent of the scalar eld: the property is self-dual and any space with the property is a nite dimensional space of maximal distance to the Hilbert space of the same dimensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2022

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2021.09.020